
Code Paper

Evaluation Arg-Identification F1: Whether LLM can identify an argument correctly (e.g., Kelly, Seoul, Beijing)

Arg-Classification F1: Whether LLM can match correctly identified argument with a correct role (e.g. agent=Kelly)

20-shot Code4Struct rivals fully-supervised
approaches trained on >4k training instances.

Comparison with Supervised Approaches

It surpass current SOTA by 29.5% under 20-shot

� Code prompt is generally more effective with sufficient in-context examples�
� Text prompt performance have higher variances: T2 has poor low-shot perf, while being slightly better than code

prompt on an LLM finetuned with RLHF.

Is code prompt any better than text prompt?

Code Representation Allows Cross-Sibling Transfer

� same-type: using examples from the testing event type itsel�
� non-sibling type: using examples from a random non-sibiling

Using sibling examples help: they are just as useful as
annotated example from the predict event type!

Method Ontology Code Representation: We convert the existing event type ontology to Python class definitions.

Task Prompt: Conditioned on these definitions, we put the input sentence into a docstring to prompt LLM.

Can we leverage such text-to-code capability of LLM to
tackle structured prediction problems?

Motivation
� Large Language Model (LLM) trained on a mixture of text and

code can translate natural language (NL) instructions into
structured code�

� Some semantic structures (e.g., output event-entity graph in
event argument extraction) can be easily translated into code.

Xingyao Wang, Sha Li, Heng Ji

{xingyao6, shal2, hengji}@illinois.edu

Code4Struct: Code Generation for Few-Shot Event Structure Prediction

