
Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji

{xingyao6,yangyic3,lifan4,yunzhuli,haopeng,hengji}@illinois.edu, yizzhang@apple.com

Executable Code Actions Elicit Better LLM Agents

Advantage of CodeAct
CodeAct Shows the Promise as a Strong Tool Use Framework (Table
2) Compared to Text/JSON, CodeAct achieves comparable or better
performance even in atomic actions (the simplistic tool use scenario)
where its control and data flow strengths are ablated.

CodeAct Gets More Done with Fewer Interactions (Table 3)

CodeAct generally has a higher task success rate (12 out of 17
evaluated LLMs). Moreover, using CodeAct requires a lower average
number of turns (12 out of 17 evaluated LLMs).

The ability to benefit from multi-turn interactions and existing
software packages. Thanks to LLM’s extensive knowledge of Python
learned during pre-training, the LLM agent can automatically import the
correct Python libraries to solve tasks without requiring user-provided
tools or demonstrations.

Using CodeActAgent (based on fine-tuned Mistral-7b). No in-context demonstrations are provided to the model. Some messages are omitted for space. See
https://chat.xwang.dev/r/Vqn108G for complete interaction.

Empowering Open-source LLM Agent
to be Better at CodeAct
Based on CodeAct framework, we build a CodeActInstruct
dataset to improve open-source LLM agents, covering
Agent-Environment Interactions spanning multiple domains.

We train CodeActAgent on CodeActInstruct and general
conversations with two variants of backbone LLM (Llama-2
7B and Mistral-7b).

 We find the resulting model excel in agent task that uses code
as action (both in-domain and out-of-domain).

 Such superior performance also generalize to out-of-domain
text as action

 These agent capabilities does not come at the cost of the
model’s general knowledge, coding, reasoning, and natural
language dialog capability!

 We generate data by running stronger LLMs (e.g., gpt-3.5, gpt-4, claude) to interact with
the computer (information seeking, software package tool use, external memory) and
the physical world (robot planning).

 To retain the ability to engage in NL conversation, we mix multi-turn human-LLM natural
language conversations with CodeActInstruct for LLM supervised fine-tuning (SFT).

Paper Code Try out CodeAct
in OpenDevin ->

CodeAct Framework
CodeAct is a general-purpose framework that allows LLMs to generate
executable Python code as actions.

Comparing CodeAct with Text/JSON: It gets more thing done in fewer
turns of interactions - up to 20% higher success rate w/ 30% fewer turns
on M3ToolEval

This work proposes to use executable code to consolidate LLM
agents’ actions into a unified action space (CodeAct).

Motivation
 Large Language Model (LLM) agents, capable of performing a broad range of

actions, such as invoking tools and controlling robots, show great potential in
tackling real-world challenges

 LLM agents are typically prompted to produce actions by generating JSON or
text in a pre-defined format, usually limited by constrained action space (e.g.,
the scope of pre-defined tools) and restricted flexibility (e.g., inability to
compose multiple tools)

