Executable Code Actions Elicit Better LLM Agents

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji

{xingyao6,yangyic3,lifan4,yunzhuli,haopeng,hengji}@illinois.edu, yizzhang@apple.com

Motivation

- Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges.
- LLM agents are typically prompted to produce actions by generating **JSON** or text in a pre-defined format, usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools)

This work proposes to use executable code to consolidate LLM agents' actions into a unified action space (CodeAct).

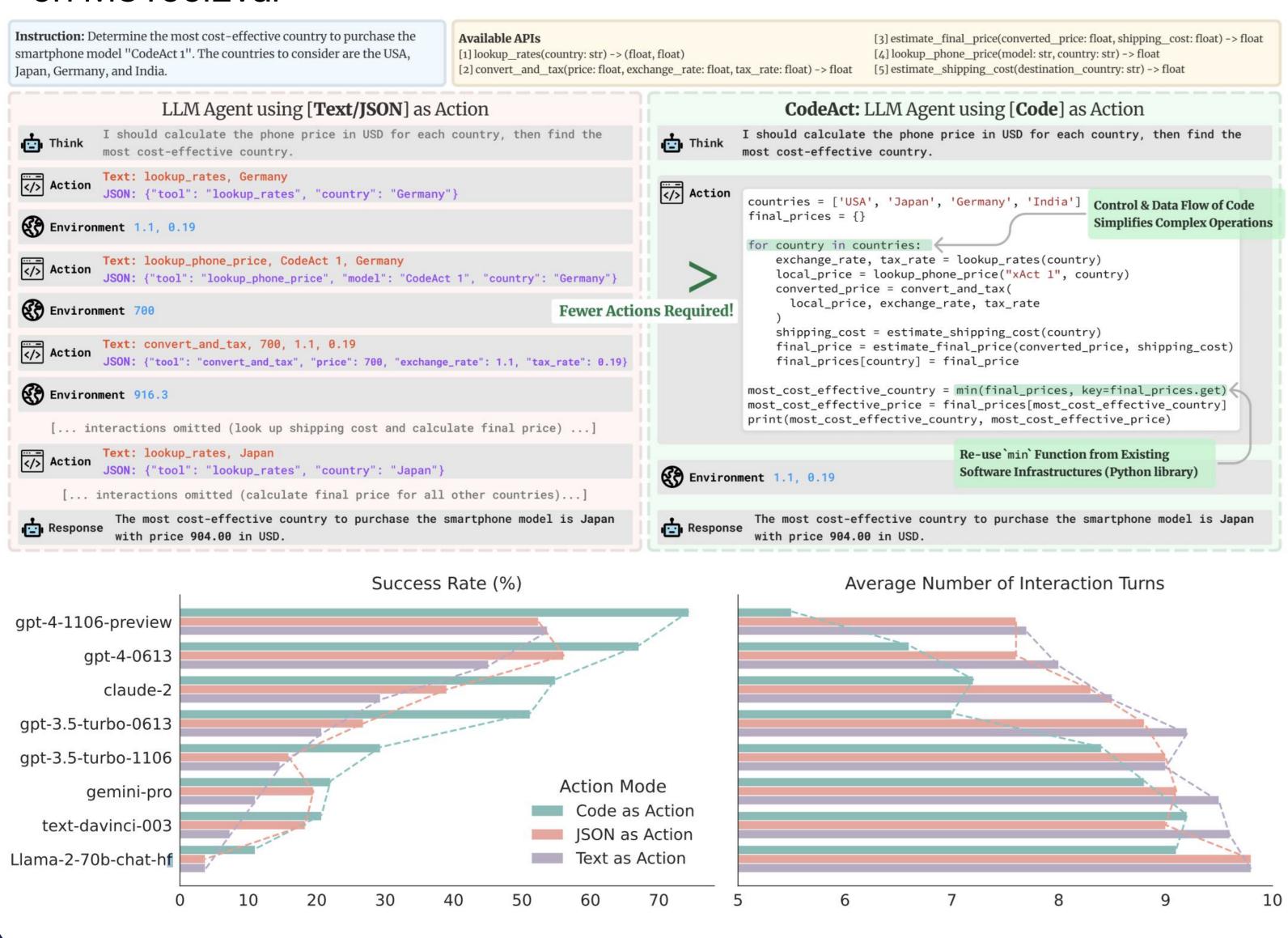
CodeAct Framework

CodeAct is a general-purpose framework that allows LLMs to generate executable Python code as actions.

Table 1: The benefit of CodeAct compared to using Text/JSON for LI					
	CodeAct for LLM action	JSON or Text fo			
Availability of Data	\checkmark Large quantity of code available ¹ for pre-training	×Data curation			
Complex Operation (e.g., looping, composition of multiple tools)	✓ Natively supported via control and data flow	×Requires care define new tools			
Availability of Tools	✓ Can directly use existing software packages ²	×Requires hun scratch or existin			
Automated Feedback	✓ Feedback mechanism ³ (e.g., traceback) is already implemented as an infrastructure for most programming languages	Requires huma route feedback f language used to			

¹ Including code demonstrating useful behaviors for LLM agents (e.g., task decomposition, coordination of multiple function calls to different tools). ² Human-written Python packages covering a wide range of applications are available on https://pypi.org/. ³ For example, in Python, errors and exceptions (https://docs.python.org/3/tutorial/errors.html) are available. Most software provides error messages in natural language to help human programmers debug their code. CodeAct enables LLM to use them directly.

Comparing **CodeAct** with Text/JSON: It gets more thing done in fewer turns of interactions - up to 20% higher success rate w/ 30% fewer turns on M3ToolEval



M action.

for LLM action

n required for particular format

reful engineering if feasible (e.g., ls to mimic if-statement)

man effort to curate tools from ing software

man effort to provide feedback or refrom the underlying programming to implement the tools

Advantage of CodeAct

CodeAct Shows the Promise as a Strong Tool Use Framework (Table 2) Compared to Text/JSON, CodeAct achieves comparable or better performance even in *atomic* actions (the simplistic tool use scenario) where its control and data flow strengths are ablated.

second-best is underlined.

Table 2: Atomic API call correctness on API- Table 3: Success rates (higher the better) and average turns required per Bank. The best performance is **bolded**, and the instance (lower the better) on M³ToolEval. The best results for each model are **bolded**, and the second-best ones are underlined.

Correctness (%, ↑)				Success Rate $(\%, \uparrow)$			Avg. Turns (↓)			
Format of Action	CodeAct	JSON	Text	Format of Action	CodeAct	JSON	Text	CodeAct	JSON	Text
Open-source 1	LMs				Open-sourc	e LLMs				
CodeLlama-7b-Instruct-hf	12.5	12.0	17.0	CodeLlama-7b-Instruct-hf	4.9	2.4	2.4	9.7	9.9	9.9
CodeLlama-13b-Instruct-hf	<u>11.8</u>	7.8	14.0	CodeLlama-13b-Instruct-hf	4.9	4.9	4.9	9.8	$\overline{9.8}$	9.7
CodeLlama-34b-Instruct-hf	17.3	12.0	16.8	CodeLlama-34b-Instruct-hf	2.4	0.0	0.0	9.9	10.0	10.0
Llama-2-7b-chat-hf	28.8	11.3	25.8	Llama-2-7b-chat-hf	0.0	$\overline{1.2}$	$\bf{2.4}$	8.9	9.5	9.6
Llama-2-13b-chat-hf	38.1	8.5	37.3	Llama-2-13b-chat-hf	0.0	0.0	0.0	9.7	10.0	10.0
Llama-2-70b-chat-hf	35.6	14.3	37.6	Llama-2-70b-chat-hf	11.0	3.7	3.7	9.1	9.8	9.8
Mistral-7B-Instruct-v0.1	$\underline{2.5}$	2.3	3 .0	Mistral-7B-Instruct-v0.1	0.0	3.7	$\overline{1.2}$	10.0	9.8	9.9
lemur-70b-chat-v1	58.6	46.6	56.1	lemur-70b-chat-v1	13.4	15.9	12.2	9.1	<u>9.3</u>	$\overline{9.4}$
Closed-source LLMs				Closed-source LLMs						
claude-2	76.7	59.4	73.7	claude-2	54.9	39.0	29.3	7.2	8.3	8.5
claude-instant-1	75.2	64.9	73.2	claude-instant-1	20.7	31.7	24.4	8.8	8.6	8.9
gemini-pro	70.4	73.2	71.2	gemini-pro	22.0	19.5	11.0	8.8	9.1	9.5
gpt-3.5-turbo-0613	74.4	73.9	73.4	gpt-3.5-turbo-0613	51.2	26.8	20.7	7.0	8.8	9.2
gpt-3.5-turbo-1106	75.4	78.4	73.4	gpt-3.5-turbo-1106	29.3	15.9	14.6	8.4	9.0	9.0
gpt-4-0613	75.4	82.0	74.4	gpt-4-0613	67.1	56.1	45.1	6.6	7.6	8.0
gpt-4-1106-preview	76.7	82.7	73.4	gpt-4-1106-preview	74.4	52.4	53.7	5.5	7.6	7.7
text-davinci-002	69.2	59.6	57.4	text-davinci-002	4.9	4.9	8.5	9.7	9.8	9.6
text-davinci-003	<u>75.4</u>	76.9	69.7	text-davinci-003	20.7	18.3	7.3	9.2	9.0	9.6
Frequency of Best-Performing Format ↑				Frequency of	of Best-perfor	rming Fo	rmat †			
Open-source	4	0	$\underline{4}$	Open-source	5	$\underline{4}$	3	6	<u>1</u>	<u>1</u>
Closed-source	$\underline{4}$	5	0	Closed-source	7	1	<u>1</u>	6	$\underline{2}$	1
Overall	8	5	4	Overall	12	5	4	12	3	2

CodeAct Gets More Done with Fewer Interactions (Table 3)

CodeAct generally has a higher task success rate (12 out of 17 evaluated LLMs). Moreover, using CodeAct requires a lower average number of turns (12 out of 17 evaluated LLMs).

The ability to benefit from multi-turn interactions and existing **software packages.** Thanks to LLM's extensive knowledge of Python learned during pre-training, the LLM agent can automatically import the correct Python libraries to solve tasks without requiring user-provided tools or demonstrations.

Liser Here is a dataset about auto MPG: "https://huggingface.co/datasets/scikit- learn/auto-mpg/raw/main/auto-mpg.csv". You should download and load the	Environment Mean squared error: 10.710864418838367 R^2 score: 0.790150038676035	Can you rotate the x ticks by 45 degrees for better readability?				
dataset from the URL, take a look at it, check for missing value, do a train-test split, and train a regression model predicting its MPG. You should use everything except "mpg" and "car name" as the input features.	CodeActAgent The mean squared error is 10.711 and the R^2 score is 0.790, which indicates that the model has a good fit with the data []	Certainly! Here is the updated bar chart with the x-ticks rotated by 45 degrees for better readability:				
CodeActAgent To accomplish this task, I will use the pandas library to download and load the dataset, check for missing values, and perform a train-test split. Then, I will use	Can you also give me the MSE and R^2 for the training set?	<pre># Plot regression coefficients plt.bar(feature_names, coef, tick_labels=False) plt.xticks(feature_names, feature_names,</pre>				
<pre>the scikit-learn library to train a regression model. import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # Download and load the dataset df = pd.read_csv("https://huggingface.co/datasets/scikit-learn/auto-mpg/raw/main/auto-mpg.csv") # Check for missing values print(df.isnul().sum()) # Remove rows with missing values df = df.dropna() # Perform train-test split Use Pandas Library to Download Examine, and Process Data</pre>	<pre></pre>	<pre> Environment Figure size 640x480 with 1 Axes> AttributeError Cell In[1], line 10 7 feature_names = model.feature_names_in_ 9 # Plot regression coefficients> 10 plt.bar(feature_names, coef, tick_labels=False) 11 plt.xticks(feature_names, feature_names, rotation=45, ha='right', fontsize=12) 12 plt.xlabel('Input Feature') [] </pre> Self-Debug for Data Visualization				
<pre>X = df.drop(columns=["mpg", "car name"]) y = df["mpg"] X_train, X_test, y_train, y_test = train_test_split(X, y,</pre>	R^2 score (training set): 0.826001578671067	AttributeError: Rectangle.set() got an unexpected keyword argument 'tick_labels'				
<pre>model = LinearRegression() model.fit(X_train, y_train) # Predict MPG for test data y_pred = model.predict(X_test) # Evaluate the model print("Mean squared error: ", np.mean((y_test - y_pred) ** 2)) print("R^2 score: ", r2_score(y_test, y_pred))</pre>		<pre>It seems that the tick_labels argument is not a valid argument for the bar() function in Matplotlib. Instead, we can use the tick_params() function to rotate the x-ticks []</pre>				
Environment mpg 0 [omitted for space] car name 0	Can you visualize the regression coefficient? You may access them via model.coef_ and their names via model.feature_names_in_					
<pre>dtype: int64 ValueError Traceback (most recent call last) /tmp/ipykernel_12/1372561217.py in ?() 18 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 [] 19 20 # Train a regression model 21 model = LinearRegression() > 22 model.fit(X_train, y_train) 23 24 # Predict MPG for test data 25 y_pred = model.predict(X_test) [omitted for space] ValueError: could not convert string to float: '2' </pre>	<pre>Certainly! Here is a visualization of the regression coefficients [] import matplotlib.pyplot as plt # Get regression coefficients coef = model.coef_ # Get names of input features feature_names = model.feature_names_in_ # Plot regression coefficients plt.bar(feature_names, coef) plt.xlabel('Input Feature') plt.ylabel('Regression Coefficients') # Display the plot plt.show()</pre>	<pre>CodeActAgent I apologize for the confusion. It seems that the set_xticks() function is not a valid function in Matplotlib. Instead, we can use the xticks() function to set the x-ticks and rotate them by 45 degrees for better readability. Here is the updated bar chart with the x-ticks rotated by 45 degrees: [same code omitted] plt.xticks(feature_names, feature_names, rotation=45, ha='right', fontsize=12) [same code omitted]</pre>				
<pre>It seems that there is a data type issue in the dataset. The '?' character is present in the data, which is causing the error when trying to convert the data to a float. To fix this, I will remove the rows containing the '?' character.</pre> <pre> # Remove rows containing '?' df = df.replace('?', np.nan) df = df.drop(columns=["mpg", "car name"]) y = df["mpg"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42</pre>	Figure size 640x480 with 1 Axes>	Figure size 640x480 with 1 Axes>				
<pre>) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print("Mean squared error: ", np.mean((y_test - y_pred) ** 2)) print("R^2 score: ", r2_score(y_test, y_pred))</pre>	CodeActAgent The regression coefficients are plotted as a bar chart, with each input feature on the x-axis and the corresponding coefficient on the y-axis []	Input Feature				

Using CodeActAgent (based on fine-tuned Mistral-7b). No in-context demonstrations are provided to the model. Some messages are omitted for space. See https://chat.xwang.dev/r/Vqn108G for complete interaction.

Empowering Open-source LLM Agent to be Better at CodeAct

Based on CodeAct framework, we build a **CodeActInstruct** dataset to improve open-source LLM agents, covering Agent-Environment Interactions spanning multiple domains.

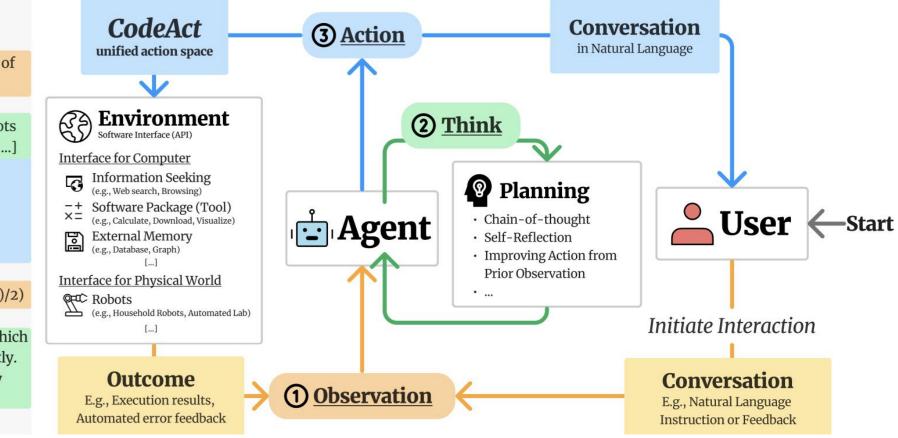
		Example User:							
	1		reciprocals of the roots						
		Assistant:							
	2	To find the sum of th of the quadratic equa	ne reciprocals of the roo ation \$x^2-13x+4=0\$ [
	3	<pre><execute> import sympy x = sympy.Symbol('> roots = sympy.solve print(1/roots[0] + </execute></pre>	e(x**2 - 13*x + 4)						
	0	Env:							
	(1)		2) + 1/(13/2 - 3*sqrt(17						
		Assistant:							
	2	makes it difficult to Let's use the quadra	re in symbolic form, w evaluate the sum direct tic formula to explicitly alues of the roots first.						
		[]							
•	 We generate data by rule 								
		0							
	th	0							
		e compute	er (informat						
		e compute	er (informat						
	th	ne compute ne physical	er (informat world (rob						
•	th	ne compute ne physical	er (informat						
•	th To	ne compute ne physical p retain the	er (informat world (rob ability to e						
•	th To	ne compute ne physical p retain the	er (informat world (rob						
•	th Ta Ia	ne compute ne physical p retain the	er (informat world (rob ability to e						
	th Tc Ia Data N	ne compute ne physical poretain the nguage co	er (informat world (rob ability to e onversation						
I	th Tc la Data N Prior	ne compute ne physical o retain the nguage co	er (informat world (rob ability to e onversation						

We train CodeActAgent on CodeActInstruct and general conversations with two variants of backbone LLM (Llama-2) 7B and Mistral-7b).

- text as action.
- language dialog capability!

				Agent Tasks				Generi	c Tasks		Overall
		Code as Action		Text as Action (OD)		(OD)				Average	
Model	Size	MINT (ID)	MINT (OD)	M ³ ToolEval (OD)	Miniwob++	SciWorld	MMLU	HumanEval	GSM8K	MTBench	
				Open-source LL	Ms (LLaMA-2-b	ased)					
Llama2 Base	7B	_*	_*	_*	_*	_*	45.3	12.8	14.6	_*	-*
Llama2 Chat	7B	3.2	11.0	<u>0.0</u>	0.0	5.9	48.0	13.9	27.7	6.3	21.1
FireAct (Chen et al., 2023a)	7B	0.0	0.3	<u>0.0</u>	0.0	6.8	44.1	3.5	12.4	4.5	14.0
AgentLM (Zeng et al., 2023)	7B	8.7	6.1	<u>0.0</u>	28.9	13.7	48.7	15.4	24.6	6.1	24.8
CodeActAgent (LLaMA-2)	7B	51.3	20.4	<u>0.0</u>	25.5	17.6	50.6	18.1	38.3	7.5	30.7
				Open-source L	LMs (Mistral-ba	sed)					
Mistral Base	7 B	_*	_*	_*	_*	_*	60.1	$\underline{30.5}$	$\underline{52.1}$	_*	_*
Mistral Instruct	7B	18.8	9.7	<u>0.0</u>	0.5	4.0	53.8	29.3	43.3	6.4	25.6
CodeActAgent (Mistral)	7B	57.4	32.4	12.2	46.2	$\underline{15.9}$	59.1	34.7	58.0	8.2	42.5
				Closed-	source LLMs						
gpt-3.5-turbo-0613	-	33.9	38.2	51.2	66.7	21.2	70.0	48.1	57.1	7.9	54.0
gpt-4-0613	_	68.6	70.2	67.1	69.4	36.4	86.4	67.0	87.1	9.0	71.7





running stronger LLMs (e.g., gpt-3.5, gpt-4, claude) to interact with ation seeking, software package tool use, external memory) and oot planning).

engage in NL conversation, we mix multi-turn human-LLM natural ns with CodeActInstruct for LLM supervised fine-tuning (SFT).

а Туре	Data Name	# of Data Instances	# of Total Tokens	Avg. Tokens Per Instance
-	FireAct (Chen et al., 2023a)	2,063	542, 176	262.81
-	AgentInstruct (Zeng et al., 2023)	1,866	2,517,785	1349.30
eeking	HotpotQA (Yang et al., 2018)	1,664	2,472,227	1485.71
(Tool)	MATH (Math, (Hendrycks et al., 2021b))	1,732	1,719,467	992.76
(Tool)	APPS (Code, (Hendrycks et al., 2021a))	647	1,235,472	1909.54
emory	WikiTableQuestion (Pasupat & Liang, 2015)	1,065	1,316,246	1235.91
anning	ALFWorld (Shridhar et al., 2020)	2,031	3,838,269	1889.84
	Total	7,139	${f 10, 581, 681}$	1482.24
soning	OpenOrca (Sub-sampled, (Lian et al., 2023))	50,000	14,034,152	280.68
ations	ShareGPT (Sub-sampled, (Anonymous, 2023))	10,000	17,933,861	1793.39
ations	ShareGPT (GPT-4, (OpenChat, 2023))	4,583	18, 195, 878	3970.30
soning	CapyBara (LDJnr, 2023)	4,647	4,982,435	1072.18
	Total	69, 230	${f 55, 146, 326}$	796.57

• We find the resulting model excel in agent task that uses code as action (both in-domain and out-of-domain).

• Such superior performance also generalize to out-of-domain

• These agent capabilities does not come at the cost of the model's general knowledge, coding, reasoning, and natural

