LETI: Learning to Generate from Textual Interactions

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
{xingyao6, haopeng, reyhaneh, hengji}@illinois.edu

- Fine-tuning language models (LM) can improves task performance.
- Existing techniques commonly fine-tune on input-output pairs (e.g., instruction tuning) or with numerical rewards that gauge the
 output quality (e.g., RLHF). These coarse-grained labels tells the model what's good and bad behavior, but not why!

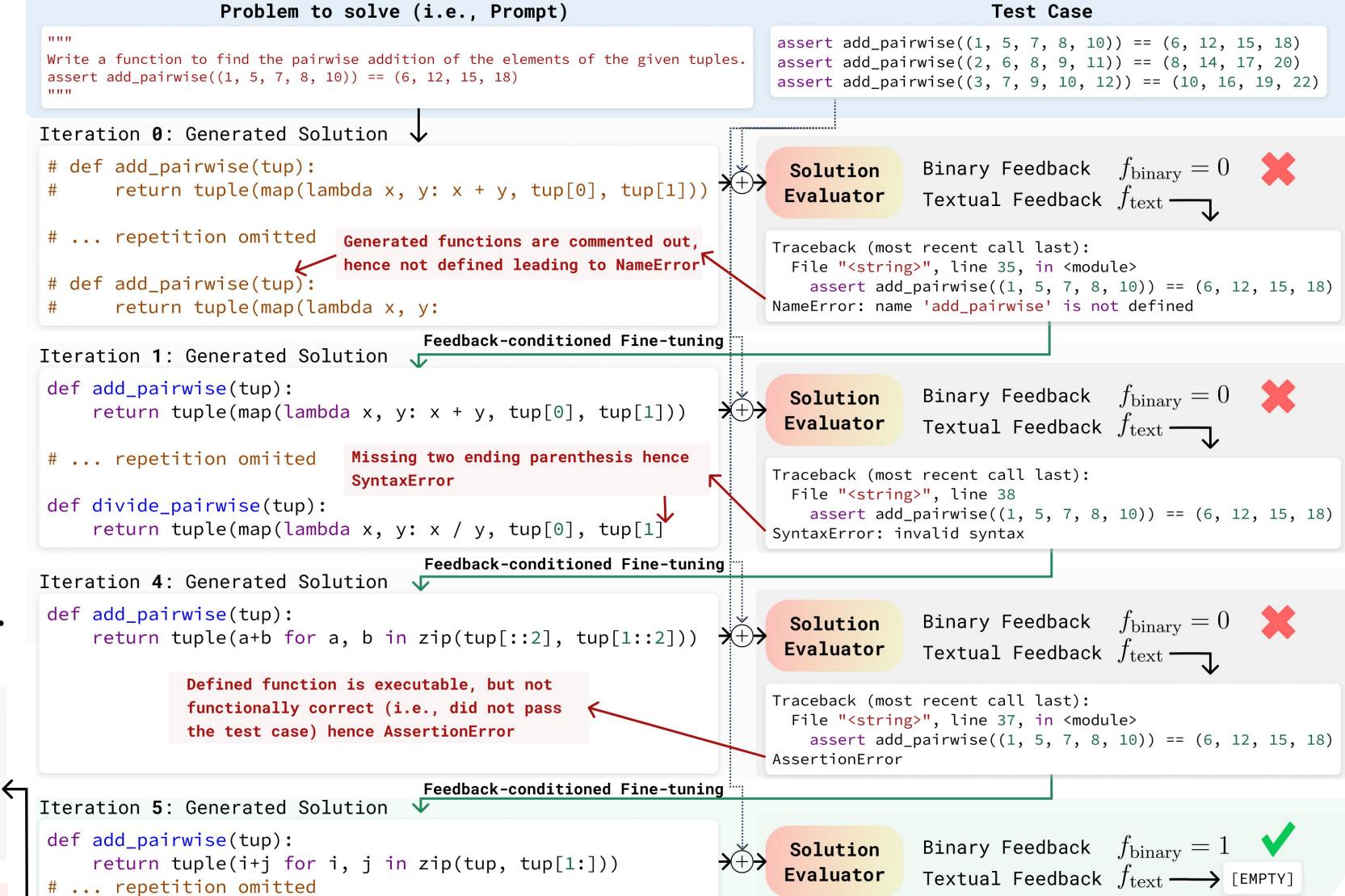
LETI explore LMs' potential to learn from textual interactions that not only <u>check their correctness with binary labels</u> but also pinpoint and explain errors in their outputs through textual feedback.

LETI's Feedback-Conditioned Fine-Tuning (FCFT)

LETI focus on Python code generation. This setting invites a **scalable way to acquire textual feedback**: the error messages and stack traces from code execution using a Python interpreter.

- Given an **instruction**, the LM generate a **solution**. The solution is evaluated by a **solution evaluator** to generate:
 - **Binary feedback**: Use test cases to determine the correctness. Represented as a *special reward token*.
 - Textual feedback: error messages and stack traces
- We *iteratively* finetune LMs using language modeling objective on solution conditioned on (binary+textual) feedback & instruction.
- At inference time, we always conditioned on good binary feedback token to generate solution from a fine-tuned LM.

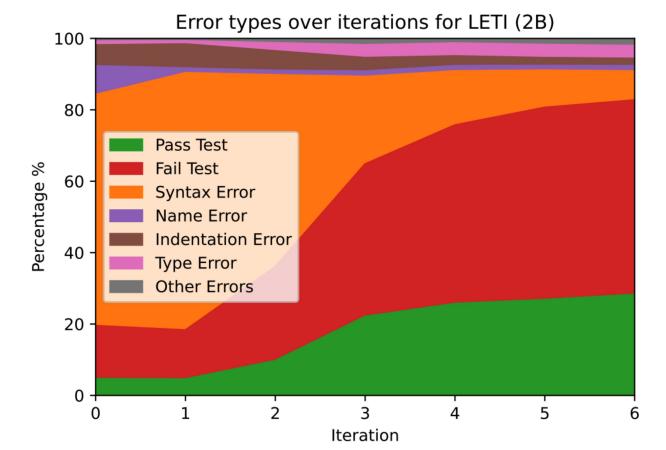
Problem		Feedback-conditioned Solutions
<pre>1 """ 2 Write a function to sort a tuple by its float element. 3 assert float_sort([('item1', '12.20'),]) == 4 """</pre>	Binary Feedback $f_{ m binary}$ ——	<pre>>< BAD > TypeError: float() argument must be a string or a number, not 'tuple' """</pre>
↓ Language Model Generate Solutions	Feedback-Conditioned Finetuning	<pre>Write a function to sort a tuple by its float element. assert float_sort([('item1', '12.20'),]) == """ def float_sort(tup): return tuple(map(float, tup))</pre>
Conditioned on < GOOD > Generated Solution Candidates		
<pre>5 def float_sort(tup):</pre>		Traceback (most recent call last):



Evaluation

LETI improve performance by learning to reduce errors

- We train a 2B base LM on MBPP training set and evaluate it on test set.
- LETI increases the proportion of executable code on test set by **63.2%** in 6 iterations (w/o post-processing)!



LETI (2B) w/o post-processing	Pre-trained	Fine-tuned
# of AssertionError	1189	4356
# of SyntaxError	5179	652
# of IndentationError	467	165
# of Other Errors	799	572
# of Pass Test	366	2255
Pass@1 (%)	4.50	28.00
LETI (2B) w/ post-processing	Pre-trained	Fine-tuned
# of AssertionError	3835	4376
# of SyntaxError	437	458
# of NameError	810	94
# of Other Errors	652	657
# of Pass Test	2266	2415

LETI's performance improvement transfers to other datasets

On LETI models trained on MBPP, we observe **consistent Pass@10 and Pass@100 improvement** across different model sizes on HumanEval.

	HumanEval		
	Pass@1	Pass@10	Pass@10
Pre-trained (350M)	<u>12.56</u>	23.11	35.1
LETI (350M) w/o textual feedback	12.19	21.69	<u>35.6</u>
LETI (350M)	13.19	23.36	36.9
Pre-trained (2B)	23.70	36.64	57.0
LETI (2B) w/o textual feedback	19.90	35.62	<u>58.4</u>
LETI (2B)	21.60	37.03	58.2
LETI (2B, trained w/ post-processing)	<u>21.60</u>	39.51	61.4

LETI retains LM's reasoning and CoT performance

ILLINOIS

- We observe no significant degradation in out-of-domain reasoning performance (i.e., GSM8K and BBH) after LETI fine-tuning
- Removing regularization degrades performance outside MBPP (e.g., GSM-8K)

	GSM8K	Big-Bench-Hard		
	PaL	direct	CoT*	$ \Delta_{ t CoT-direct} $
Pre-trained (2B)	40.03	29.67	36.81	7.14
LETI (2B)	38.97	29.41	37.46	8.05
LETI (2B, w/ post-processing)	42.99	29.81	36.72	6.91
LETI (2B) w/o textual feedback	41.93	29.23	36.71	7.48
LETI (2B) w/o regularization	32.15	30.06	35.82	5.76
Pre-trained (350M)	13.04	29.10	30.53	1.43
LETI (350M)	16.68	28.89	28.86	-0.03
LETI (350M) w/o textual feedback	16.07	28.81	28.72	-0.09
LETI (350M) w/o regularization	7.88	28.00	28.31	0.31

iteration

LETI is equally applicable to NLP tasks, If you have a solution evaluator that gives textual feedback

We formulate event argument extraction (EAE) task as a code generation problem [1], and manually

48

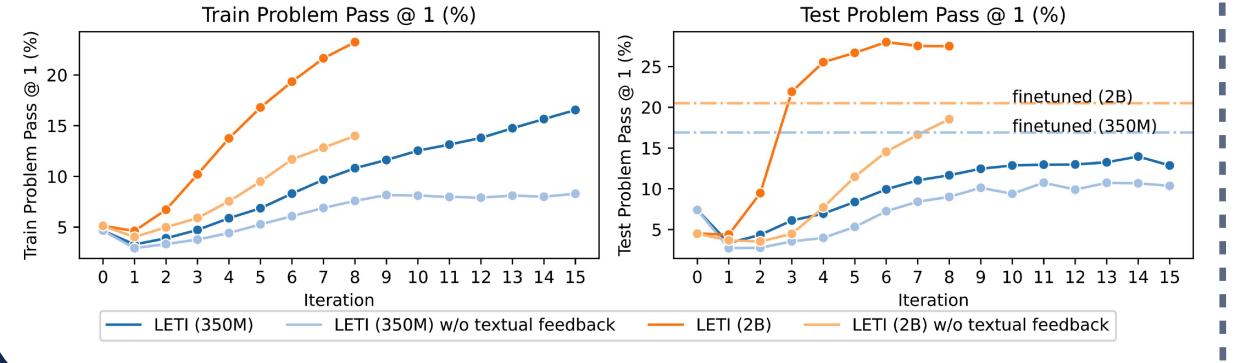
28

- designed a rule-based solution evaluator to produce textual feedback.
 - LETI can also gradually improve the performance of an EAE task.

Learning from textual feedback is up-to 2x more sample-

efficient!

- On a 2B LM, compared to w/o textual feedback, LETI reaches same test performance with 0.5x of the gradient step.
- It also gets a higher final performance!



• The design of solution evaluator can biases the optimization goal: here it biases the precision more than recall - check paper for more discussion! Training / Testing Performance Argument Identification (Arg-I) Argument Classification (Arg-C) Correlation 45 16 Arg-I P - 0.93 40 14 -0.08 Arg-I R -35 12 Arg-I F1 - 0.51 30 Arg-C P - 0.73 10 Precision (P) Precision (P) 25 Arg-C R - -0.24 Train Pass@1 Recall (R) Recall (R) 20 Arg-C F1 -0.29 Test Pass@1 F1 F1 Test Pass@1

[1] Xingyao Wang, Sha Li, and Heng Ji. "Code4Struct: Code Generation for Few-Shot Event Structure Prediction." Proceedings of the 61st Annual Meeting of

iteration

iteration

