
Code Paper

Evaluation
 We train a 2B base LM on MBPP training set and evaluate

it on test set
 LETI increases the proportion of executable code on test

set by 63.2% in 6 iterations (w/o post-processing)!

LETI improve performance by learning to reduce errors
 On LETI models trained on MBPP, we observe
consistent Pass@10 and Pass@100 improvement
across different model sizes on HumanEval.

LETI’s performance improvement transfers
to other datasets
 We observe no significant degradation in out-of-domain

reasoning performance (i.e., GSM8K and BBH) after LETI
fine-tunin

 Removing regularization degrades performance outside
MBPP (e.g., GSM-8K)

LETI retains LM's reasoning and CoT performance

 On a 2B LM, compared to w/o textual feedback, LETI
reaches same test performance with 0.5x of the gradient
step

 It also gets a higher final performance!

Learning from textual feedback is up-to 2x more sample-
efficient!

We formulate event argument extraction (EAE) task as a code generation problem [1], and manually
designed a rule-based solution evaluator to produce textual feedback

 LETI can also gradually improve the performance of an EAE task
 The design of solution evaluator can biases the optimization goal: here it biases the precision

more than recall - check paper for more discussion!

[1] Xingyao Wang, Sha Li, and Heng Ji. "Code4Struct: Code Generation for Few-Shot Event Structure Prediction." Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). 2023.

LETI is equally applicable to NLP tasks, If you have a solution evaluator that gives textual feedback

LETI focus on Python code generation. This setting invites a scalable way to acquire textual feedback: the error messages and
stack traces from code execution using a Python interpreter.

LETI’s Feedback-Conditioned Fine-Tuning (FCFT)

 Given an instruction, the LM generate a solution. The
solution is evaluated by a solution evaluator to generate

 Binary feedback: Use test cases to determine the
correctness. Represented as a special reward token

 Textual feedback: error messages and stack trace
 We iteratively finetune LMs using language modeling

objective on solution conditioned on (binary+textual)
feedback & instruction

 At inference time, we always conditioned on good binary
feedback token to generate solution from a fine-tuned LM.

Regularization of FCFT
via Continue Pretraining

LETI explore LMs’ potential to learn from textual interactions that not only check their correctness with binary labels but also
pinpoint and explain errors in their outputs through textual feedback.

Motivation
 Fine-tuning language models (LM) can improves task performance
 Existing techniques commonly fine-tune on input-output pairs (e.g., instruction tuning) or with numerical rewards that gauge the

output quality (e.g., RLHF). These coarse-grained labels tells the model what’s good and bad behavior, but not why!

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji

{xingyao6,haopeng,reyhaneh,hengji}@illinois.edu

LETI: Learning to Generate from Textual Interactions

